If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x^2+50x-4500=0
a = 45; b = 50; c = -4500;
Δ = b2-4ac
Δ = 502-4·45·(-4500)
Δ = 812500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{812500}=\sqrt{62500*13}=\sqrt{62500}*\sqrt{13}=250\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-250\sqrt{13}}{2*45}=\frac{-50-250\sqrt{13}}{90} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+250\sqrt{13}}{2*45}=\frac{-50+250\sqrt{13}}{90} $
| 2/3-9x=-24 | | 4(k+5)-2+6=2(3k+2)-6 | | 3x+6=2x+9=45 | | 8y-28=y | | 15m=5(m-1) | | 7g-3=18 | | 8x-(6x+8)=4x-36 | | 2x+9=3x+6+45 | | (x+10)/2=24 | | 5x+8-7x=4x-1 | | 2/4=n/24 | | 3x-48=39 | | 3p-22=10 | | 3x2−1=0 | | 2x+7+22=180 | | 22+2x-7=180 | | 2x+9+3x+6=45 | | 7^x-9=-8 | | 5=-20+x | | (-3)^x=729 | | -6=7.5a | | (6^x)^2=6 | | 7m−4=3m−12 | | 1=c-89/7 | | 2/3(1/5x+4)=12 | | 4x+25=3x+1 | | 3=u+6/10 | | 15*y*2=160 | | 56-2x=0 | | 49=d/5+44 | | 4x-25=3x+1 | | 2^x-50=78 |